

Water Management in Thermal Power Plants

Dr. PRADEEP JAIN (EX-GM, NTPC_NETRA)

DIRECTOR_RA CHEMTECH PRIVATE LIMITED, NEW DELHI

Email_pkjain3621@gmail.com

COOLING WATER

The most important uses of cooling water in power generation includes

1. Condensing of turbine exhaust steam in condenser

2. Auxiliary cooling water uses in process

3. Protecting high pressure pump bearings by cooling.

Cooling water chemistry control is very critical in preventing Corrosion, Scale and Fouling problems.

Sources of water

- Surface water
- Lake, pond/reservoir, river, canal
- Ground water
- Bore wells
- Sea water
- Including Brackish water (Back sea water)

Types of Surface Water use as make up water in CW system

- Raw Water
- Clarified Water
- Filtered Water
- Soft Water

Types of cooling water system

- 1. Once-through
- 2. Closed Re-circulating
- 3. Open Re-circulating (Evaporative cooling towers)

Once Through System

- Water goes form one pass of heat exchanger and discharged from other pass to the source.
- Large quantity of water is needed.
- Once-through system have advantage, it will not allow cooling water to concentrate, thus reducing scaling and corrosion potential.
- Water is returned to source at higher temperature, thus cause thermal and chemical pollution of water bodies.
- Highly prone to biological fouling.

Once Through System

Closed Recirculating System

- Water circulates in a closed cycle, completely confined within the system and heat exchangers.
- Alternate cooling and heating without air contact
- Heat absorbed by the water in closed system is transferred by a water to water exchange to the recirculating water of an open recirculating system from which the heat can be lost to atmosphere.
- Example:- Electric generators and Chilled water systems etc. which is having secondary cooling water system by plate type heat exchangers.

Closed Re-circulating System

Open Recirculating (Evaporative cooling Towers)

- Water circulates through the condenser or heat exchanger to a cooling tower and then returned to exchanger after cooling.
- Cooling of water is by evaporation process, water loss by evaporation and drift.
- The evaporated water is very pure and the minerals are left behind to concentrate.
- Used in power plants, chemical, petrochemical, steel, paper industries and all types of processing plants.

Types of Cooling Towers

- FORCED / INDUCED DRAFT COOLING TOWERS
- NATURAL DRAFT COOLING TOWERS

FORCED / INDUCED DRAFT COOLING TOWERS

Reprinted with permission from POWER

Induced Draft Tower

Reprinted with dermission from POWER

Forced Draft Tower

Natural Draft Cooling Tower

Counterflow

TERMS ASSOCIATED WITH COOLING TOWER

Evaporation : Approx. amount of evaporation that occurs in a cooling tower can be calculated using the following formula.

- E = (Cr X DT) / 1000
- E = Evaporation rate, M3/hr
- Cr = Recirculation rate of cooling tower
- DT = Temperature diff. (°F) between hot and cool circulating water

As air rises inside the **tower**, it receives the latent heat of vaporization from the **water**, and thus the **water** is cooled. As a rule of thumb, for every 10°F (5.5°C) of **water cooling**, 1% total mass of **water** (Circulation Flow Rate) is lost due to **evaporation**.

TERMS ASSOCIATED WITH COOLING TOWER

Drift (D) : Drift is a form of blow down that occurs due to entrainment of water droplets in the air leaving the cooling tower. Drift typically ranges from about 0.05% to 0.3% of the recirculation rate depending upon the type and efficiency of the cooling tower.

Make up (MU): Water added to circulating water system to replace water lost from the system by evaporation, drift, blown down, and leakages.

TERMS ASSOCIATED WITH COOLING TOWER

Cycle of concentration (COC)

Number of times the circulating water is concentrated in cooling tower is known as Cycle of conc. The maximum (COC) depends upon the effectiveness of corrosion and scale inhibitor programs and on the quality of make up water.

Blow Down (BD)

Some water must be continually removed from cooling water system to prevent excessive build up of the dissolved solids. This is known as blow down.

Cooling Water Balance

Evaporation (E), Blow down (BD), Drift (D) and Make Up (MU) constitute the water balance around the cooling tower.

 $COC = \frac{CI^{-} \text{ or } Mg^{+2} \text{ Conc in BD}}{CI^{-} \text{ or } Mg^{+2} \text{ Conc in MU}}$ E

BD + D = ------C-1

MU = E + BD + D

Cooling Water Associated Problems

- Due to water's ability to dissolve most substances to some extent, and its ability to support biological life every cooling water system is subjected to potential operational problems. These are:
- 1. Deposit formation
- 2. Corrosion
- 3. Biological deposition and corrosion

Condenser Tube having clean surfaces in 200 MW Unit

Internal surface of condenser tube made of SS-304 showing clean surfaces

SCALE DEPOSITION

Due to increase of Cycle Of Concentration, the concentration of the dissolved ions in cooling water increases, solubility of one or more of the constituents is exceeded the solubility product. The compound precipitates and form deposit.

SCALING IN CONDENSER TUBES

SCALING IN COOLER TUBE

Scale forming salts in Cooling Water

Most Common

Less Frequent

Calcium Carbonate

Calcium Sulphate

Calcium Phosphate

Iron oxide

Magnesium Silicates

Zinc Phosphate

Calcium Floride

Iron Carbonate

Silica

Factors Affecting Scale formation

- Water Temperature
- Alkalinity or Acidity
- Concentration of scale forming salts
- Physical Fouling
- Microbiological concentration in CW
- Flow rate of Cooling Water
- Operating Conditions of the Process

Effects of Scale deposition

- Scale forms an insulating barrier and restricts heat transfer thus decreasing cooling efficiency.
- Flow restriction through condenser tubes
- Reduction in condenser vacuum and power generation.
- Reduction in heat rate of cycle.

How to control the Scale formation

There are three basic methods for preventing formation of scale in cooling water system

- 1. Remove the hardness salts / minerals from the water prior to use.
- 2. Keep scale-forming constituents in solution
- 3. Control of COC will not allow impurity to precipitate in the system.

Scale Control

Calcium carbonate is the most common frequently encountered scale in cooling water system. It forms when Calcium and carbonate alkalinity exceed the saturation level and began to precipitate as calcium carbonate.

Langelier Saturation Index (LSI) Ryzner Stability Index (RSI) Puckorious (or modified stability) index

These are very useful indices for determining scale and scale tendencies of make up water.

Scale / Corrosion Monitor Index

To predict corrosive or scale forming tendency of water following indices are used.

- Lengelier (or Saturation) Index
 LSI = pH pHs
 - pHs = (9.3 + A + B) (C + D)
 - A -Total Dissolved Solid, ppm
 - B Temperature, F
 - C Calcium Hardness, ppm
 - D Alkalinity of Cooling Water, ppm

CALCULATION OF pHs BY CALCULATOR

- Enter ppm Ca as CaCO₃
- Multiply by total alkalinity, ppm as CaCO₃
- Take log of the product, store in memory, clear
- Enter water temp. °F
- Multiply by temp. coefficient

	T < 77	=	0.0142
_	T > 77	=	0.00915

- Add memory to product, store sum memory, clear
- Enter T.D.S. in ppm and take log
- Multiply by 0.10, add constant per temp

 $- T < 77^{\circ}F = 12.65$

 $- T > 77^{\circ}F = 12.27$

- Substract memory, round off to near by hundredth as pHs
- Lengelier saturation index = pH pH_s

CALCULATION OF pHs BY CALCULATOR

Ryzner (or Stability) Index
RSI = 2pHs – pH

Puckorious (or modified stability) index $PSI = 2pHs - pH_e$ $(pH_{equilibrium} = 1.465log_{(total alkalinity)})$

- LSI +ve indicates Scaling tendency
- LSI -ve indicates Corrosive tendency
- RSI > 6.0 indicates Corrosive tendency
- RSI < 6.0 indicates Scaling tendency
- PSI > 6.0 indicates Corrosive tendency
- PSI < 6.0 indicates Scaling tendency

Scaling Severity keyed to index

LSI	RSI/PSI	Conditions
3.0	3.0	Extremely severe scaling
2.0	4.0	Very severe
1.0	5.0	Severe
0.5	5.5	Moderate
0.2	5.8	Slight
0.0	6.0	Stable Water
-0.2	6.5	No scaling very slight tendency to dissolve solids
-0.5	7.0	No scaling slight tendency to dissolve solids
-1.0	8.0	No scaling moderate tendency to dissolve solids
-2.0	9.0	No scaling strong tendency to dissolve solids
-3.0	10.0	No scaling very strong tendency to dissolve solids

Limiting COC without Treatment

In re-circulating type of cooling, a definite concentration of scale forming salts are allowed to retain in the system, beyond which salts are likely to precipitate to form scale

Concentration of Calcium in make up water as CaCO ₃ in ppm	Cycle of Concentration	
100	2.0	
150	1.7	
200	1.5	
250	1.3	
300	1.1	

To attain the above, **blowdown** of water from the cooling cycle and fresh water is required to be taken into the circuit. Similarly blowdown of CW is required when CaSO₄ and Silica values are exceeding 1250 ppm and 125 ppm respectively.

Methods to control the Scale formation

- Softening of Make Up water to remove hardness salts from makeup water.
- Keep scale forming salts in CW system by pH adjustment, Dosing of Polyphosphate.
- Dosing of Organo-Phosphonates as Scale Inhibitors
- Control of Fouling / Bio-fouling
- Limiting Cycle of Concentration to reduce the ionic concentration in CW system
- Periodic Chemical Cleaning of heat exchangers
- Mechanical High Pressure water Jet Cleaning

Softening of Make Up Water

- Softening process removes Calcium and Magnesium either by
- Lime soda softening (Faridabad Gas)
- Ion-Exchange process (Dadri Thermal)
 - $CaCO_3 + R-Na = Na_2CO_3 + R_2-Ca$
 - $MgCO_3 + R-Na = Na_2CO_3 + R_2-Mg$

Softened water upto 5 ppm hardness as $CaCO_3$ is supplied as make up to the CW system. The chances of precipitation of scale is minimized provided alkalinity and TDS of CW do not become very high to affect the scaling index.

Lime softening is not preferred due to high pH of softened water. (Acid dosing required for pH control) In case of Ion exchange softening (base exchanger) discharge of waste regenerant (brine solution) is problematic as observed in NTPC station.

Scale Control Program

Acid Feed

Sulfuric acid addition reduce bicarbonate alkalinity as follows $H_2SO_4 + Ca(HCO_3)_2 \longrightarrow CaSO_4 + CO_2 + 2H_2O$

Alkaline Treatment Method

Alkaline treatment programs are designed to either keep calcium in solution or to modify the crystalline structure of calcium precipitate so that a sludge like product will form, which can be taken out from the system by blow down.

Scale stabilizing chemicals include Polyphosphate and Polyacrylates

Organophosphonates

AMP – Amino tri(methylene) phosphonate

- HEDP- 1-hydroxyethylidine-1,1-disphophonic acid)
- PBTC 2-phosphonobutane-1,2,4- tricarboxilic acid

Crystal Modifiers

Copolymers and Terpolymers

(Polymaleic acids and sulphonated polystyrenes)

Scale inhibitors are controlled by

- Sequestration
- Threshold Inhibition
- Crystal Modification

Scale Inhibitors	Threshold	Crystal Modifier
Polyphosphates	yes	
Phosphonates	yes	
Phosphate Esters	yes	
Poly carboxylic acids	yes	yes
Polymaleic acid		yes
sulphonates		yes

Crystal Modifier

Scale Inhibitor dosage

If PSI or RSI is	ppm of active Phosphonate (HEDP)	ppm of Polyacrylate (1000 mol. Wt.)
6.0 or above	-0-	-0-
6.0 to 5.5	0.2 to 0.5	0.5 to 1.0
5.5 to 5.0	0.5 to 1.2	1.0 to 3.0
5.0 to 4.5	1.2 to 2.2	3.0 to 5.0
4.5 to 4.0	2.2 to 3.2	Can't be controlled with Polyacrylate
Below 4.0	Can't be controlled with phosphonate	

Corrosion

Corrosion is an electrochemical process by which a metal such as mild steel returns to its natural state. Deterioration and perforation of heat exchanger tubes can result in lost product, system contamination and inefficient operation. Such damage requires downtime for maintenance, equipment replacement etc all leading to increased production costs.

CORROSION

Anode

 $Fe \rightarrow Fe^{2+} + 2e^{-}$

 $Fe^{2+} + 2OH^{-} \rightarrow Fe (OH)_{2}$ Fe (OH)₂ + H₂O + 1/2 O₂ → Fe (OH)₃ Fe (OH)₃ → Fe₂O₃ . H₂O + 2H₂O

Cathode

 $2 H^+ + 2e^- \rightarrow H_2$ $4H^+ + O_2 + 4e^- \rightarrow 4 OH^ O_2 + 2H_2O + 4e^- \rightarrow 4 OH^-$

MECHANISM OF CORROSION

Corrosion Cell

TYPES OF CORROSION

Corrosion falls into three basic categories1. GENERAL CORROSION2. LOCALISED PITTING CORROSION

3. GALVANIC CORROSION

General corrosion takes place over the entire metal surface while localised pitting takes place at a small anode and because of smaller area is typically more severe.

Galvanic corrosion occurs when one metal sacrifices itself to protect another. This would occur when two dissimilar metals are in contact.

Scaled/Fouled Condenser tube

Greenish porous deposits on the condenser Tube

Condenser Tube after cleaning

Internal surface of condenser tube after cleaning showing dezincification and pitting

Microstructure of condenser tube

Typical microstructure of the tube surface showing severe attack

Microstructure of condenser tube showing pits and Intergranular attack

Corrosion in condenser tube at tube plate site

STEAM IMPINGEMENT/AMMONIA ATTACK OF ADM. BRASS CONDENSER TUBE

CREVICE & PITTING CORROSION OF SS CONDENSER TUBE

CREVICE & PITTING CORROSION OF SS CONDENSER TUBE

CORROSION IN CW SYSTEM

- PIPELINES
- CONDENSER WATER BOXES
- TUBE PLATES
- CONDENSER TUBES
- INLET END OF CONDENSER TUBES
- PUMPS
- BOILER TUBES (CARRY OVER)
- AUXILLIARY COOLING WATER SYSTEM
- HEAT EXCHANGERS

Causes of Corrosion

- Dissolved Oxygen
- Dissolved and suspended solids
- Acidity Alkalinity
- Water velocity
- Temperature
- Microbiological Growth
- High Chloride /sulphate
- Fouling/ Under deposit corrosion

The pH or alkalinity of the water is extremely important as it affects corrosion significantly.

As a general rule, corrosion potential decreases when pH increases, but as the pH increase so does the potential for scale.

CORROSION CONTROL

- pH adjustment
- Polyphosphate dosing, SHMP
- Ferrous sulphate dosing
- Cathodic Protection
- Corrosion inhibitors
- Corrosion resistant materials in Condenser i.e Titanium
- Anti corrosive coating
- Keeping the system clean

Corrosion Inhibitors

Corrosion inhibitors are used to control the corrosion in CW system, which are

Phosphates -When added to the system in presence of calcium hardness will form a cathodic inhibitor.

- Chromates : Anodic inhibitor
- Zinc : Cathodic inhibitor, which provides excellent pitting corrosion protection.
- Tiazoles : An anodic inhibitor that specifically protects system copper based metals.
- Phosphonates : Cathodic inhibitor which will form monomolecular film on metal surfaces.
- Molybdates : A non toxic heavy metal that is excellent anodic inhibitor

CORROSION INHIBITORS

ANODIC

Chromate

Orthophosphate

Nitrite

Orthosilicate

CATHODIC

Polyphosphate

Zinc

Molybdate

Phosphonates

Corrosion Monitoring

System corrosion rates can be measured with the use of:

- Corrosion Coupons
- Corrosion Rate Monitor (Corrater)
- Water chemistry parameters (Water balance)

Corrosion Rate calculation by weight loss

C.R. (mpy) =
$$\frac{22.3 \times W}{D \times A \times T}$$

- W = Weight Loss (mg)
- $D = Specific Gravity (gm/cm^2)$
- A = Exposed Area (inch²)
- T = Time (Days)
- **1 MM** = **40 Mils**
- 1 MIL = 25 Microns

FOULING

- Fouling is deposition of suspended solids or buildup of microbiological organisms within heat exchanger and cooling tower fills.
- Warm water, aeration nutrients and sunlight transform a cooling tower into an efficient bio-reactor.

Types of fouling

- General Fouling by silt
- Fouling by corrosion products
- Microbiological Fouling

CT FILL FOULING

FOULING BY CORROSION PRODUCT

SEVERE BIOFOULING OF COOLING TOWER

BIOFOULING OF ADM. BRASS

THE BIOFOULING PROCESS

- Bacteria prefer to colonise surfaces
- enables production of biofilm which acts to protect and entrap food sources
- Planktonic bacteria
 - free swimming in bulk water
- Sessile bacteria
 - attached to surfaces

Biological Deposition and Corrosion

Fouling - Biological problems are created by both large and microscopic organisms. These are weeds, floating debris, mussels, oysters etc.

MIC- Microbiological problems are generally referred to as slime deposits such as algae, fungi and bacteria. The gelatinous slimes produced by many micro organisms can trap sediments thus encouraging fouling and scale. Even corrosion can be caused by certain organisms that produce corrosive byproducts or environments. Corrosion by micro organism is called Microbiological Induced corrosion (MIC).

Micro biological corrosion in condenser tube

MIC OF ADM. BRASS IN CONDENSER TUBES SHOWING HORSE SHOE SHAPE

Corrosion in condenser tube

MIC OF CONDENSER TUBE BEFORE AND AFTER CLEANING

BIOFILM FORMATION

Fig.1 - Attachment of bacteria to surfaces

Maturation

Initial Development

Accumulation of debris

- Problems associated with biofilms
- Fouling of Cooling Tower,
- distribution pipeline, heat
- exchangers
- Reduction in heat transfer
- efficiency
- Lost production
- Under deposit corrosion
- Inactivation/ interference with inhibitors

Thermal conductivity comparison of depositforming compounds and biofilm

Substance	Thermal Conductivity (W m ⁻¹ K ⁻¹)
CaCO ₃	2.6
CaSO ₄	2.3
$Ca_3(PO_4)_2$	2.6
Fe ₂ O ₃	2.9
Analcite	1.3
Biofilm	0.6

Bio - Fouling Control

Biocides are used to control microbiological fouling and organic fouling in cooling water. Continuous chlorine dosing is done for better bio-fouling control.

Types of Biocides

- Oxidising Biocides
 - Have the ability to oxidise organic matter eg. protein groups
- Non-oxidising Biocides
 - Prevent normal cell metabolism in any of the following ways :
 - Alter permeability of cell wall
 - Destroy protein groups
 - Precipitate protein
 - Block metabolic enzyme reactions
- Biodispersants (nonionic surfactants) are used to enhance the effectiveness of biocides

Oxidising Biocides

Various Oxidizing Biocides used in cooling water system are as follows:-

- A. Chlorine and its various products
- B. Chlorine oxide
- C. Ozone
- D. Hydrogen Peroxide

Oxidizing biocides are capable of undergoing oxidative reactions with organic molecules. They kill microorganisms on contact and dissipate to form harmless, non-toxic products. However, their activity is short and require frequent and continuous dosing. Also high dosages cause delignification of timbre and metallic corrosion.

Oxidising Biocides

- Rapid kill
- Cost effective
- Tolerant of contamination i.e. Chlorine Dioxide
- Minimal environmental impact i.e. Ozone, Hydrogen Peroxide, Chlorine Dioxide
- Ineffective against SRB's
- Low residual toxicity
- Counts approaching potable water standards possible

EFFECTIVENESS OF CHLORINE AS A BIOCIDE

EFFECT OF pH ON THE DISSOCIATION OF HYPOCHLOROUS ACID

pН	HClO-
4	100
5	99.7
6	96.8
7	75.2
8	20.0
9	Negligible

EFFECTIVENESS OF CHLORINE DIOXIDE AS A BIOCIDE

Chlorine dioxide (CIO_2) is a synthetic yellowish-green gas with chlorine like odor. CIO_2 is unstable as a gas and will undergo decomposition into chlorine gas (CI_2) , oxygen gas (O_2) and heat. However, CIO_2 is stable and soluble in an aqueous solution. For example, solutions of approximately 1% CIO_2 (10 g/L) may safely be stored if the solution is protected from light and kept chilled. In solution, CIO_2 exists as a true gas. CIO_2 must be produced and used at the same location.

EFFECTIVENESS OF BIOCIDE

The biocidal efficiency, the stability, and the effects of pH on the efficiency of some disinfectants

Disinfectant	Biocidal Efficiency	Stability	Effect of the pH Efficiency (pH = 6-9)
Ozone	1	4	little influence
Chlorine Dioxide	2	2	efficiency slightly increases with the increase of pH
Chlorine	3	3	efficiency decreases considerably with the increase of pH

Non Oxidising Biocides

- Methylene bis-thiocyanate (MBT)
- Organo tin compound
- Quaternary ammonium salts
- Copper salts
- DBNPA (2,2-dibromo-3-nitrilopropionamide)

Non Oxidising Biocides

- Select alternating biocide to prevent resistant strains from developing
- Effective against SRB's
- Can protect system long after dosing.
- Contain bio dispersant
- Higher dosage for kill possible

BIODISPERSANTS

- Improves penetration of biocide within bacterial slime
- Disperse released bacteria and biofilm into bulk water for removal by blow down
- Reduces ability for bacteria to attach to system surface
- Improves performance of both non oxidising and particularly oxidising biocides

SUSPENDED MATTER

- DUST/DIRT
- CONTAMINANTS e.g. OIL
- BIOLOGICAL e.g. ALGAE, FUNGI, BACTERIA

CONTROL OF FOULING IN CT FILLS

Mechanical Methods –

- Filters for Make up water To remove suspended matter from Make up water
- Side Stream Filters To remove suspended matter from CT basin
- CT Air Filters To prevent ingress of suspended matter/ bacteria from air

Note: <u>Chemical treatment along with use of Filters</u> <u>will reduce treatment cost.</u>

Control of Fouling in CW

- Filtration
- Cleaning On–load / Off load
- Blow Down
- **Control By chemicals**
- 1. Dispersants
- 2. Sludge fluidizers High molecular weight polymers
- 3. Surfactants
- 4. Biocides

CONTROL OF FOULING IN CT FILLS

Side steam Filter

Benefit of a Filter in an Open CW system

Keep the system clean **Reduce Biocide requirement** Prolong the life of mechanical equipments Provides a warning of sudden system disruption **Reduce downtime** Reduce maintenance and energy cost Reduce erosion of pump parts and

equipment's

Maintain heat transfer efficiency

CONTROL OF FOULING IN CT FILLS

AIR INTAKE FILTERS FOR COOLING TOWERS

FOULING INHIBITOR

- MONO-POLYMERS,
- CO-POLYMERS,
- TER-POLYMERS,
- HOMO-POLYMERS OF POLYACRYLIC ACID,
- POLYMAELIC ACID,
- POLYSULPHONIC ACID,
- PBTC,
- HEDP

THEY ARE USED IN DIFFERENT COMBINATIONS AND/OR BLENDED WITH OTHER ANTISCALANT, CORROSION INHIBITORS, DISPERSANTS, ETC

Integrated Cooling water treatment

Key elements of cooling water treatment

- 1. Scale control- Ca, Mg Compounds & silicates
- Use of threshold inhibitors- phosphonate or/and polymeric compounds
- 2. Corrosion Control
- Use of cathodic, anodic & adsorption based inhibitors
- 3. Fouling Control metal oxides, silt & suspended impurities
- Use of Homopolymers & multifunctional Co-polymers & Ter-polymers
- 4. Microbiological control Biofouling & microbiological induced corrosion
- Use of oxidizing & non-oxidising biocides & biodispersants

Development of CW Treatment Program

- 1. Analysis of waters, deposits from the plants to assess the extent and nature of problem.
- 2. Analysis of data of water analysis (last one year) <u>COC</u> <u>analysis</u> with LSI, RSI & PSI calculations.
- 3. Assessment of actual site condition by visual inspection and process data (condenser in/out temp., condenser vacuum, flow rate, hot well temp, metallurgy etc.)
- 4. Development of methodology for removal of existing deposits on the CT fills, condenser tubes and other equipment's of CW system.
- 5. Development of chemical treatment program at laboratory based on lab studies. Selection of chemicals on the basis of above analysis.

Development of CW Treatment Program

- 6. Conducting Inhibitor Efficiency & Dispersing Capability tests and Corrosion Rate assessment for individual chemical in the laboratory as per applicable standards.
- 7. Preparation of formulations on the basis of residual conc. of each chemical to be maintained in CW system and lab results of individual chemical w.r.t scale inhibition efficiency, dispersing capability and corrosion inhibition. Repeating the tests in S.No-6 above for the formulations.
- 8. Validation of the laboratory data on a pilot scale.
- 9. Optimization of dosages and treatment program based on pilot scale studies. (Simulation studies Dynamic Corrosion test Rig)
- 10. Recommendations for assessing the effectiveness of the treatment program through appropriate monitoring techniques/equipment

Typical CW Treatment Formulation

Treatment may include

- Phosphate (Tri, hexa, ortho) TSP, SHMP
- Organo phosphonates: AMP, HEDP, PBTC
- Zinc Sulphate / molybdate
- Triazole: Benzo triazole (BTA), Toly Triazole (TTA)
- Dispersants mono, co or ter polymers of acrylates, sulphonates, maleic acid etc
- Bio-dispersant
- Biocides

Dosages & Residuals

The formulation is dosed in a manner so that the following residual concentrations of scale & corrosion inhibitors, dispersants, biocides is maintained in the system

Chemical Inorganic phosphate as PO₄ Organic phosphate as PO₄ Zinc as Zn Molybdate as MoO_₄ **Dispersant as polymer Biocides Chlorine** CIO₂ (continuous) Once daily

Residual

- 2-3 ppm
- 1.5-2.0 ppm
- 0.5-1.0 ppm
- 0.5-1.0 ppm
- 1.0-2.0 ppm
- 0.2-0.5 ppm
- 0.05-0.1 ppm
- 0.2 0.5 ppm

Calculation of Sulphuric acid dosing in CW System

The Treatment program is suitable for pH range from 7.5 - 8.3 and alkalinity upto 300 ppm. The upper limit of alkalinity is 300 ppm, beyond that sulphuric acid dosing would be required to maintain the alkalinity <= 300 ppm as per the following formula:

Sulphuric acid required (kg/day)

- = {0.026 X (Circulating Water Alkalinity 300) X
 Blow Down
 - (m3/hour)}

(Where 0.026 is a factor applied for calculations)

Attributes of Economy of Treatment program

- Knowledge of the system operating conditions
- Metallurgy
- Tolerance of impurities wrt COC
- Effectiveness over Heat Transfer
- Operating pH- Alkaline treatment may cost more but are flexible
- Calcite saturation : Higher LSI requires more antiscalants dose
- Treatment induced problems eg High phosphate leads to more microbial growth
- Extent of monitoring A better monitoring can reduce cost

Monitoring and Evaluation of Treatment Programme

- Monitoring
- Continuous
- 1.pH
- 2. Water Level in sump
- 3. Blow Down Rate
- 4. Make up water rate
- 5. Temperature

Every shift

- 1. Residual Chlorine
- 2. Lengelier index Ryzner Index (RSI)

Monitoring and Evaluation of Treatment Program

Complete Water Analysis

Make water and Circulating water (Daily)

- 1. pH
- 2. Alkalinity
- 3. Conductivity
- 4. Turbidity
- 5. Calcium and Magnesium Hardness
- 6. Chlorides
- 7. Silica
- 8. Iron
- 9. Treatment Chemicals

Evaluation of CW Treatment Program

- Corrosion Control
- 1. Corrosion Coupons
- 2. On-line corrosion/ Instant Corrosion meter
- Scale and Fouling control
- 1. Scale and fouling monitor
- 2. Heat transfer data
- 3. Periodic inspection
- Microbiological control
- 1. Regular microbiological analysis
- 2. On-line bio-fouling monitor
- 3. ORP monitor

ONLINE BIOFOULING MONITORING

Figure 2 The BloGEORGE™ probe.

ONLINE BIOFOULING MONITORING

FIGURE 4 - Probe Tapping on Cooling Water Return Line

FIGURE 5 - View of Probe Installed in Tap

CORROSION RATE MONITORS FOR FIELD

CORROSION TEST RACK WITH TEST COUPONS FOR MONITORING OF CORROSION & SCALING IN CW SYSTEM

INPLANT CORROSION MONITORING OF CW SYSTEM THROUGH WEIGHT LOSS COUPONS

INPLANT BIOFOULING MONITORING OF CW SYSTEM

Table 2 – EPRI Guidelines for Cooling waters

Water Quality		EPRI	Remarks
Parameter	Units	Guidelines	
Са	mg/l CaCO3	900 (max)	
Ca X SO ₄	(mg/l) ²	5,00,000	
M Alkalinity	mg/l CaCO3	30 – 50 220 - 250	Without Scale Inhibitor With Scale Inhibitor
Mg X SiO ₂	mg/l CaCO3 X mg/l siO2	35,000	
HCO ₃ +CO ₃	mg/I CaCO3		
SO4	mg/l		Refer to CaSO4 limit
SiO ₂	mg/l	150	
PO ₄	mg/l		
Fe (Total)	mg/l	< 0.5	
Mn	mg/l	< 0.5	

Table 2 – EPRI Guidelines for Cooling waters

Cu	mg/l	< 0.1	
ΑΙ	mg/l	< 1	
S	mg/l	5	
NH ₃	mg/l	< 2	For copper based alloys present in the system
рН		6.0 - 7.2 7.8 - 8.4	Without Scale Inhibitor With Scale Inhibitor (Higher operating pH is possible with new alkaline treatments)
TDS	mg/l	70,000	
TSS	mg/l	< 50 < 100	For Film type Fill Splash type Fill
BOD	mg/l	<100	Consult with specialty chemical provider before finalising control parameters

Table 2 – EPRI Guidelines for Cooling waters

COD	mg/l	<100	do
LSI		< 0	
RSI		> 6	
PSI		> 6	

Guidelines for assessing Corrosion

Model	Corrosion rate (mpy)	Comments
Carbon Steel	0-2	Excellent corrosion resistance
	2-3	Generally acceptable for all systems
	3-5	Fair Corrosion resistance acceptable with Iron fouling control program
	5-10	Unacceptable corrosion resistance
Admiralty Brass	0-0.2	Generally safe for heat exchanger tubing & Ms equipments
	0.2-0.5	High corrosion rate may enhance corrosion of mild steel
	>0.5	Unacceptable high rate for long term; significantly affects MS corrosion
Stainless steel	0-0.1	Acceptable
	> 0.1	Unacceptable corrosion resistance

Guidelines of assessing Biological count

Count Range	Inference
0 -10000	Essentially sterile
10000-500000	System under control
500000 - 1million	System may be under control but should be monitored
1 million – 10 million	System out of control- requires biocide
Over 10 million	Serious fouling problems may be occurring immediate biocide additive required

Use of Treated Sewage Water in Power Plant

Revised tariff policy GOI dt. 28.01.16

Thermal power plants incl. existing plants located within 50 km radius of STP of municipality/local bodies/ similar organization shall mandatorily use treated sewage water produced by these bodies

Such power plant will also ensure backup source of water

Associated cost to be allowed as a pass through in the tariff.

May require newer costlier technologies like reverse osmosis

Standard for new STP (MOEF & Climatic change draft notification Nov'15)

STANDARDS FOR SEWAGE TREATMENT PLANTS ALONG WITH TIME FRAME FOR IMPLEMENTATION

Effluent discharged standards for Sewage Freetment Plant are mentioned below:

SI. No.	Industry	Parameters	Standards for New STPs (Design after notification date)*
Sewage Treatment Plant	Sewage Treatment Plant	pl-l	6.5 -9.0
		BOD	10
	COD	50	
		TSS	20
	พ	5	
		N-total	10
		Fecal Coliforns (MPN/i00ml)	<\00

Note:

(i) A 1 values in mg/l except for pH and Coliform.

(ii) These standards will be applicable for discharge in water resources as well as fer fand disposal. The standards for Focal Coliform may not be applied for use.

Use of Treated Sewage Water in NTPC Stations

Scanning of STPs done within 50 Km of NTPC plants all over India

Potential of using 560 MLD of treated sewage water identified based on the above assessment for following power stations

Projects	Capacity (MLD)
Solapur	90
Dadri	180
Meja	90
Patratu	48
Mouda	150

PERIODIC CLEANING

MECHANICAL CLEANINGS

- ON LINE CLEANING (COLTS)
- BULLETS CLEANINGS
- HIGH PRESSURE JETTING
- BACKWASHING

CHEMICAL CLEANING

- ACID HYDROCHLORIC ACID,
- SULPHAMIC ACID
- CHELANTS
- PROPRIETARY CLEANING SOLVENTS

HYDROCHLORIC ACID (HCl)

 $CaCO_3 + 2HCI = CaCI_2 + CO_2 + H_2O$ $Fe_3O_4 + 8 HCI = 2 FeCI_3 + FeCI_2 + 4H_2O$

- REACTS WITH MOST WATER FORMED SCALE AND CORROSION PRODUCTS TO FORM SOLUBLE CHLORIDES
- IN CASE OF BAD INHIBITION, IT CAN CAUSE CORROSION PHENOMENA OF LOCALISED PITTING TYPE
- TEMPERATURE MUST BE LIMITED TO 66°C
- LOWEST COST

SULPHAMIC ACID

$$\begin{split} HSO_{3}\text{-} OH + H\text{-}NH_{2} & \rightarrow HSO_{3}\text{-}NH_{2} \\ & (Sulphamic acid) \\ 2 \ NH_{2}\text{-}SO_{3}H + Ca^{2+} & \rightarrow (NH_{2}\text{-}SO_{3})_{2} \ Ca \\ Fe_{3}O_{4} + 8NH_{2}\text{-}HSO_{3} & \rightarrow 2Fe \ (NH_{2}SO_{3})_{6} + (NH_{2}SO_{3})_{2} \ Fe \ +H_{2} \\ \bullet \ SOLID \ CRYSTALS \ CONVERT \ IN \ ACID \ SOLUBLE \ WHEN \\ DISSOLVED \ IN \ WATER \end{split}$$

- IT's CALCIUM SALTS ARE SOLUBLE IN WATER
- IT IS WEAKER THAN OTHER MINERAL ACIDS
- SULPHAMIC SALTS SLOWLY CHANGES TO SULPHATE WITH PRECIPITATION OF CaSO₄
- PRINCIPAL ADVANTAGE IS EASE OF HANDLING
- COST IS HIGH AS CPMPARED TO HCl

Schematic of Chemical cleaning circuit in 500 MW unit.

Chemical cleaning circuit in 500 MW unit.

Chemical cleaning circuit in 500 MW unit.

Condenser tubes in 500 MW unit.

Chemical cleaning circuit in 500 MW unit Before Chemical Cleaning.

Condenser tubes scale in 500 MW unit.

Simhadari #1

Condenser waterbox in 500 MW unit.

Simhadari #1

Chemical cleaning circuit in 500 MW unit after Chemical Cleaning.

Condenser in 500 MW unit.

Condenser tubes in 500 MW unit.

CONCLUSIONS

- MONITOR ALL PARAMETERS AT THE INLET AND OUTLET REGULARLY
- USE ONLINE MONITORING EQUIPMENT REGULARLY
- USE PROPER CHEMICAL TREATMENT WITH CONTINUOUS ANALYSIS
- USE & OPTIMIZE BIOCIDES AND OTHER CHEMICALS
- WHEREEVER FEASIBLE OPERATE AT HIGHER COC WITH TREATMENT
- WATER QUALITY IS NOT GOING TO IMPROVE IN FUTURE
- PRE-TREAT THE WATER FOLLOWED BY TREATMENT FOR CONTROLLING SCALING, FOULING, CORROSION & BIOFOULING
- MAINTAIN CLEANLINESS ARROUND COOLING WATER SYSTEM

